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Abstract We give a description of the center of the affine nilTemperley–Lieb algebra based
on a certain grading of the algebra and on a faithful representation of it on fermionic particle
configurations. We present a normal form for monomials, hence construct a basis of the
algebra, and use this basis to show that the affine nilTemperley–Lieb algebra is finitely
generated over its center. As an application, we obtain a natural embedding of the affine
nilTemperley–Lieb algebra on N generators into the affine nilTemperley–Lieb algebra on
N + 1 generators.

1 Introduction

The main goal of this work is to describe the center of the affine nilTemperley–Lieb algebra
n̂TLN over any ground field. Only two tools are used: a fine grading on n̂TLN and a rep-
resentation of n̂TLN on fermionic particle configurations on a circle. It is essential that this
graphical representation be faithful (see [12, Prop. 9.1]). We provide an alternative proof of
that fact by constructing a basis for n̂TLN that is especially adapted to the problem. This basis
has further advantages: It can be used to prove that the affine nilTemperley–Lieb algebra is
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414 G. Benkart, J. Meinel

finitely generated over its center. Also, it can be used to exhibit an explicit embedding of
n̂TLN into n̂TLN+1 defined on basis elements that otherwise would not be apparent, since the
defining relations of these algebras are affine, and there is no embedding of the corresponding
Coxeter graphs.

For a ground field k, the affine nilTemperley–Lieb algebra n̂TLN is the unital associative
k-algebra given by N generators a0, . . . , aN−1 and nil relations a2i = 0 and aiai±1ai = 0
for all i . Generators that are far apart commute, i.e. aia j = a jai for i − j �= ±1 mod N . In
these relations, the indices are interpreted modulo N so that the generators a0 and aN−1 are
neighbours that do not commute. The subalgebra of n̂TLN generated by a1, . . . , aN−1 is the
(finite) nilTemperley–Lieb algebra nTLN , as in [19]. The affine nilTemperley–Lieb algebra
appears in many different settings, which we describe next.

1. n̂TLN is a quotient of the affine nilCoxeter algebra of type ÃN−1.
The affine nilCoxeter algebra ̂UN of type ÃN−1 over a field k is the unital associative
algebra generated by elements ui , 0 ≤ i ≤ N − 1, satisfying the relations u2i = 0;
uiu j = u jui for i − j �= ±1 mod N ; and uiui+1ui = ui+1uiui+1 for 1 ≤ i ≤ N − 1,
where the subscripts are read modulo N . The algebra n̂TLN is isomorphic to the quotient
of ̂UN obtained by imposing the additional relations uiui+1ui = ui+1uiui+1 = 0 for
1 ≤ i ≤ N − 1. The affine nilCoxeter algebra is closely connected with affine Schur
functions, k-Schur functions, and the affine Stanley symmetric functions, which are
related to reduced word decompositions in the affine symmetric group (see e.g. [14,15]).
The nilCoxeter algebra UN has generators ui , 1 ≤ i ≤ N − 1, which satisfy the same
relations as they do in ̂UN . It first appeared in work on the cohomology of flag varieties
[3] and has played an essential role in studies on Schubert polynomials, Stanley sym-
metric functions, and the geometry of flag varieties (see for example [8,11,16,17]). The
definition of UN was inspired by the divided difference operators ∂i on polynomials in
variables x = {x1, . . . , xN } defined by

∂i ( f ) = f (x) − f (σix)
xi − xi+1

,

where the transposition σi fixes all the variables except for xi and xi+1, which it inter-
changes. The operators ∂i satisfy the nilCoxeter relations above, and applications of these
relations enabled Fomin and Stanley [8] to recover known properties and establish new
properties of Schubert polynomials.
The algebra UN belongs to a two-parameter family of algebras having generators ui ,
1 ≤ i ≤ N − 1, which satisfy the relations uiu j = u jui for |i − j | > 1 and uiui+1ui =
ui+1uiui+1 for 1 ≤ i ≤ N − 2 from above, together with the relation u2i = αui + β

for all i , where α, β are fixed parameters. In particular, the specialization α = β = 0
yields the nilCoxeter algebra; α = 0, β = 1 gives the standard presentation of the group
algebra of the symmetric group kSN ; and α = q − 1, β = q gives the Hecke algebra
HN (q) of type A.
Motivated by categorification results in [6], Khovanov [10] introduced restriction and

induction functors FD and FX corresponding to the natural inclusion of algebras UN ↪→
UN+1 on the direct sum C of the categories CN of finite-dimensionalUN -modules. These
functors categorify theWeyl algebra of differential operatorswith polynomial coefficients
in one variable and correspond to the Weyl algebra generators ∂ and x (derivative and
multiplication by x), which satisfy the relation ∂x − x∂ = 1.
Brichard [5] used a diagram calculus on cylinders to determine the dimension of the

center of UN and to describe a basis of the center for which the multiplication is trivial.
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The center of the affine nilTemperley–Lieb algebra 415

In this diagram calculus on N strands, the generator ui corresponds to a crossing of the
strands i and i + 1. The nil relation u2i = 0 is represented by demanding that any two
strands may cross at most once; otherwise the diagram is identified with zero.

2. n̂TLN is a quotient of the negative part of the universal enveloping algebra of the affine
Lie algebra ̂slN .
The negative partU− of the universal enveloping algebraU of the affine Lie algebrâslN
has generators fi , 0 ≤ i ≤ N − 1, which satisfy the Serre relations

f 2i fi+1 − 2 fi fi+1 fi + fi+1 f
2
i = 0

= f 2i+1 fi − 2 fi+1 fi fi+1 + fi f
2
i+1 and fi f j = f j fi for i − j �= ±1 mod N

(all indices modulo N ). Factoring U− by the ideal generated by the elements f 2i , 0 ≤
i ≤ N − 1, gives n̂TLN whenever the characteristic of k is different from 2.

3. n̂TLN acts on the small quantum cohomology ring of the Grassmannian.
As in [19, Sec. 2], (see also [12]), consider the cohomology ring H•(Gr(k, N )) with
integer coefficients for the Grassmannian Gr(k, N ) of k-dimensional subspaces of kN .
It has a basis given by the Schubert classes [�λ], where λ runs over all partitions with k
parts, the largest part having size N −k. By recording the k vertical and N −k horizontal
steps that identify the Young diagram of λ inside the northwest corner of a k × (N − k)
rectangle, such a partition corresponds to a (0, 1)-sequence of length N with k ones (resp.
N −k zeros) in the positions corresponding to the vertical (respectively horizontal) steps.
As a Z[q]-module for an indeterminate q , the quantum cohomology ring of the Grass-
mannian is given by qH•(Gr(k, N )) = Z[q] ⊗Z H•(Gr(k, N )) together with a
q-multiplication. The n̂TLN -action can be defined combinatorially on

qH•(Gr(k, N )) ∼= spanZ[q] {(0, 1)-sequences of length N with k ones}
as described in the next item, and the multiplication of two Schubert classes [�λ] · [�μ]
is equal to sλ · [�μ] where sλ is a certain Schur polynomial in the generators of n̂TLN as
in [19, Cor. 8.3].

4. n̂TLN acts faithfully on fermionic particle configurations on a circle.
This is the graphical representation from [12] (see also [19]), whichwe use in our descrip-
tion of the center of n̂TLN . First, a (0, 1)-sequencewith k ones is identifiedwith a circular
particle configuration having N positions, where the k particles are distributed at the posi-
tion on the circle that corresponds to their position in the sequence, so that there is at
most one particle at each position. On the space

spank[q] {fermionic particle configurations of k particles on a circle with N positions},
the generators ai of n̂TLN act by sending a particle lying at position i to position i + 1.
Additionally, the particle configuration ismultiplied by±q when applyinga0. The precise
definition is given in Sect. 4, but here is a representative picture (Fig. 1).

5. n̂TLN appears as a subalgebra of the annihilation/creation algebra.
The finite nilTemperley–Lieb algebra is a subalgebra of the Clifford algebra having gen-
erators {ξi , ξ∗

i | 0 ≤ i ≤ N − 1} and relations ξiξ j + ξ jξi = 0, ξ∗
i ξ∗

j + ξ∗
j ξ

∗
i = 0,

ξiξ
∗
j + ξ∗

j ξi = δi j . The Clifford generators ξi (resp. ξ∗
i ) act on the fermionic parti-

cle configurations by annihilation (resp. creation) of a particle at position i . The finite
nilTemperley–Lieb algebra appears inside the Clifford algebra via ai �→ ξ∗

i+1ξi . As dis-
cussed in [12, Sec. 8], the affine nilTemperley–Lieb algebra is a q-deformation of this
construction.

123



416 G. Benkart, J. Meinel

Fig. 1 N = 8: Application of a3a2a5 to the particle configuration (0, 1, 2, 5) gives (0, 1, 4, 6)

6. n̂TLN is the associated graded algebra of the affine Temperley–Lieb algebra.
The affine Temperley–Lieb algebra ̂TLN (δ) has the usual commuting relations and the
relations aiai±1ai = ai and a2i = δai for some parameter δ ∈ k instead of the nil
relations (where again all indices are mod N ). It is a filtered algebra with its �th filtration
space generated by all monomials of length ≤ �. Since its associated graded algebra is
n̂TLN for any value of δ, elements of n̂TLN can be identified with reduced expressions
in ̂TLN (δ).
The diagrammatic structure of̂TLN (δ) is given by the same pictures as for theTemperley–
Lieb algebra, but now the diagrams are wrapped around the cylinder (see e.g. [7,13]). The
top and bottom of the cylinder each have N nodes. Monomials in the affine Temperley–
Lieb algebra are represented by diagrams of N non-crossing strands, each connecting
a pair of those 2N nodes. Multiplication of two monomials is realized by stacking the
cylinders one on top of the other, and connecting and smoothing the strands. Whenever
the strands form a circle, this is removed from the diagram at the expense of multiplying
by the parameter δ. The relation aiai±1ai = ai corresponds to the isotopy between a
strand that changes direction and a strand that is pulled straight.
In contrast, this diagrammatic realization for the affine nilTemperley–Lieb algebra would
not respect isotopy: The relation aiai±1ai = 0 implies that strands which change the
direction are identified with zero. Nevertheless, the diagram of a reduced expression in
̂TLN may be considered as an element of n̂TLN . Such a diagram consists of a number
(possibly 0) of arcs that connect two nodes on the top of the cylinder, the same number of
arcs connecting two nodes on the bottom, and arcs that connect a top node and a bottom
one. The latter arcs wrap around the cylinder either all in a strictly clockwise direction
or all in a strictly counterclockwise way. Since the multiplication of two such diagrams
may give zero, we will not use this diagrammatic realization here.

We proceed as follows: In Sect. 2, we introduce the notation used in this article. The
ZN -grading of n̂TLN is given is Sect. 3, and its importance for the description of the center is
discussed. In Sect. 4, we give a detailed definition of the n̂TLN -action on particle configura-
tions on a circle. We also define special monomials that serve as the projections onto a single
particle configuration (up to multiplication by ±q). Theorem 4.5 of that section recalls [12,
Prop. 9.1] stating that the representation is faithful. In [12], this fact is deduced from the finite
nilTemperley–Lieb algebra case, as treated in [4] and [2, Prop. 2.4.1]. We give a complete,
self-contained proof in Sect. 8. Our proof is elementary and relies on the construction of a
basis. Section 5 contains the main result (Theorem 5.5) of this article:

Theorem The center of n̂TLN is the subalgebra

CN = Cent(n̂TLN ) = 〈1, t1, . . . , tN−1〉 ∼= k[t1, . . . , tN−1]
(tk t� | k �= �)

,
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The center of the affine nilTemperley–Lieb algebra 417

where the generator tk = (−1)k−1∑|I|=k a(Î) is the sum of monomials a(Î) corresponding
to particle configurations given by increasing sequences I = {1 ≤ i1 < · · · < ik ≤ N } of
length k. The monomial a(Î) sends particle configurations with n �= k particles to 0 and acts
on a particle configuration with k particles by projecting onto I andmultiplying by (−1)k−1q.
Hence, tk acts as multiplication by q on the configurations with k particles.

Our N − 1 central generators tk are essentially the N − 1 central elements constructed
by Postnikov. Lemma 9.4 of [19] gives an alternative description of tk as product of the
kth elementary symmetric polynomial (with factors cyclically ordered) with the (N − k)th
complete homogeneous symmetric polynomial (with factors reverse cyclically ordered) in
the noncommuting generators of n̂TLN . The above theorem shows that in fact these elements
generate the entire center of n̂TLN . In Sect. 6, we establish that n̂TLN is finitely generated
over its center. In Sect. 7, we define a monomial basis for n̂TLN indexed by pairs of particle
configurations together with a natural number indicating how often the particles have been
moved around the circle. A proof that this is indeed a basis of n̂TLN can be found in Sect. 8.
With this basis at hand, we obtain inclusions n̂TLN ⊂ n̂TLN+1. The inclusions are not as
obvious as those for the nilCoxeter algebra UN having underlying Coxeter graph of type
AN−1, since one cannot deduce them from embeddings of the affine Coxeter graphs. Our
result, Theorem 7.1, reads as follows:

Theorem For all 0 ≤ m ≤ N − 1, there are unital algebra embeddings εm : n̂TLN →
n̂TLN+1 given by

ai �→ ai for 0 ≤ i ≤ m − 1, am �→ am+1am, ai �→ ai+1 for m + 1 ≤ i ≤ N − 1.

In Sect. 8, we show how to construct the monomial basis, namely by using a normal form
algorithm that reorders the factors of a nonzero monomial. Our basis is reminiscent of the
Jones normal form for reduced expressions of monomials in the Temperley–Lieb algebra,
as discussed in [20], and is characterised in Theorem 8.6 as follows: (See also Theorem 7.5
which gives a different description.)

Theorem (Normal form) Every nonzero monomial in the generators a j of n̂TLN can be
rewritten uniquely in the form

(a(m)
i1

. . . a(m)
ik

) . . . (a(n+1)
i1

. . . a(n+1)
ik

)(a(n)
i1

. . . a(n)
ik

) . . . (a(1)
i1

. . . a(1)
ik

)(ai1 . . . aik )

with a(n)
i�

∈ {1, a0, a1, . . . , aN−1} for all 1 ≤ n ≤ m, 1 ≤ � ≤ k, such that

a(n+1)
i�

∈
⎧

⎨

⎩

{1} if a(n)
i�

= 1,

{1, a j+1} if a(n)
i�

= a j .

The factors ai1 , . . . , aik are determined by the property that the generator ai�−1 does not
appear to the right of ai� in the original presentation of the monomial. Alternatively, every
nonzero monomial is uniquely determined by the following data from its action on the graph-
ical representation:

• the input particle configuration with the minimal number of particles on which it acts
nontrivially,

• the output particle configuration,
• the power of q by which it acts.
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418 G. Benkart, J. Meinel

For the proof of this result, we recall a characterisation of the nonzeromonomials in n̂TLN

from [9]. Then we prove faithfulness of the graphical representation of n̂TLN by describing
explicitly the matrices representing our basis elements. Al Harbat [1] has recently described
a normal form for fully commutative elements of the affine Temperley–Lieb algebra, which
gives a different normal form when passing to n̂TLN .

Our results hold over an arbitrary ground field k, even one of characteristic 2, simply
by ignoring signs in that case. In fact, our arguments work for any associative commutative
unital ground ring R by replacing k-vector spaces and k-algebras with free R-modules and R-
algebras, respectively. In particular, the affine nilTemperley–Lieb algebra over k is replaced
by the R-algebra with the same generators and relations, and the polynomial ring k[q] is
replaced by R[q]. We can even drop the assumption that the ring R is commutative if we
slightlymodify the statements about the center. This is possible because our argumentsmainly
rely on investigating monomials in the generators of n̂TLN . However, for simplicity we have
chosen to assume k is a field throughout the article.

2 Notation

Let k be any field, and assume N is a positive integer. The affine nilTemperley–Lieb algebra
n̂TLN of rank N is the unital associative k-algebra generated by elements a0, . . . , aN−1

subject to the defining relations

a2i = 0 for all 0 ≤ i ≤ N − 1,

aia j = a jai for all i − j �= ±1 mod N ,

aiai+1ai = ai+1aiai+1 = 0 for all 0 ≤ i ≤ N − 1,

where all indices are taken modulo N , so in particular aN−1a0aN−1 = a0aN−1a0 = 0.
The finite nilTemperley–Lieb algebra nTLN , as defined in [19], is the subalgebra of n̂TLN

generated by a1, . . . , aN−1 (or in fact, by any N − 1 of the generators ai ). We adopt the
convention that nTL1 = k1. We fix the following notation for monomials in n̂TLN and
nTLN : For an ordered index sequence j = ( j1, . . . , jm) with 0 ≤ j1, . . . , jm ≤ N − 1,
we define the ordered monomial a( j) = a j1 . . . a jm . Unless otherwise specified, we use the
letters i, j for indices from Z/NZ; in particular, we often identify the indices 0 and N .

Throughout we will assume N ≥ 3.

3 Gradings

One of the ingredients needed in Sect. 5 to study the center of n̂TLN is a grading on the
algebra.

Gradings faciliate the computation of the center of an algebra, as the following standard
result reduces the work to determining homogeneous central elements.

Lemma 3.1 If A = ⊕

g∈G Ag is an algebra graded by some abelian group G, then the
center of A is homogeneous, i.e. it inherits the grading.

Proof Let a = ∑

g∈G ag be a central element of the graded algebra A = ⊕

g∈G Ag . We
have for bh ∈ Ah that

∑

g∈G
agbh = abh = bha =

∑

g∈G
bhag.
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The center of the affine nilTemperley–Lieb algebra 419

Since this equality must hold in every graded component, we get agbh = bhag for all
homogeneous elements bh . Now take any element b = ∑

h∈G
bh in A, then

agb =
∑

h∈G
agbh =

∑

h∈G
bhag = bag,

hence ag is central. ��
Since the defining relations are homogeneous, both n̂TLN and nTLN have a Z-grading

by the length of a monomial, i.e. all generators ai have Z-degree 1. This can be refined to a
ZN -grading by assigning to the generator ai the degree ζi , the i th standard basis vector in
ZN . In either grading, we say that the degree 0 part of an element in n̂TLN or nTLN is its
constant term.

The ZN -grading is finer than the Z-grading in the sense that any Z-graded component of
degree different from 0 decomposes into a sum of ZN -graded components of strictly smaller
dimension.

Remark 3.2 Why do we exclude the case of N ≤ 2 from our considerations? For N = 1, 2,
there are isomorphisms n̂TLN ∼= nTLN+1, and in these cases the center is uninteresting. The
algebra n̂TL1 is 2-dimensional and commutative; while n̂TL2 has dimension 5, and its center
can be computed by hand making use of Lemma 3.1 and can be shown to be the k-span of
1, a0a1, a1a0.

Remark 3.3 The affine (or finite) Temperley–Lieb algebra, which has relations aia j = a jai
for i − j �= ±1 (mod N ), aiai±1ai = ai , and a2i = δai for some δ ∈ k, is a filtered algebra
with respect to the length filtration. For this algebra, the �th filtration space is generated by
all monomials of length ≤�. Its associated graded algebra is n̂TLN (or nTLN ). Thus, n̂TLN

is infinite dimensional when N ≥ 3, while nTLN has dimension equal to the N th Catalan
number 1

N+1

(2N
N

)

.

4 A faithful representation

The second ingredient we use to determine the center is a faithful representation of n̂TLN .
Here we recall the definition of the representation from [12] and describe its graphical real-
ization, which is very convenient to work with.

Fix a basis v1, . . . , vN of kN . Consider the vector space V =
N
⊕

k=0

(

k[q] ⊗∧k kN
)

. It has

a standard k[q]-basis consisting of wedges

v(I) := vi1 ∧ · · · ∧ vik for all (strictly) increasing sequences I = {1 ≤ i1 < · · · < ik ≤ N }
for all 0 ≤ k ≤ N , where the basis element of k = ∧0 kN is denoted v(∅). Throughout
the rest of the paper, all tensor products are taken over k, and we omit the tensor symbol in
k[q]-linear combinations of wedges.

Remark 4.1 The indices of the vectors v j should be interpreted modulo N . We make no
distinction between v0 and vN and often use the two interchangeably.

It is helpful to visualize the basis elements v(I) as particle configurations having 0 ≤ k ≤
N particles arranged on a circle with N positions, where there is at most one particle at each
site, as pictured below for N = 8 and v(1, 5, 6) = v1 ∧ v5 ∧ v6 (Fig. 2). The vector v(∅)
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420 G. Benkart, J. Meinel

Fig. 2 The element v1 ∧ v5 ∧ v6
in the graphical realization

corresponds to the configuration with no particles. Then V is the k[q]-span of such circular
particle configurations.

There is an action of the affine nilTemperley–Lieb algebra n̂TLN defined on the basis
vectors v(I) of V as follows:

Definition 4.2 For 1 ≤ j ≤ N − 1,

a jv(I) =
{

vi1 ∧ · · · ∧ vi�−1 ∧ v j+1 ∧ vi�+1 ∧ · · · ∧ vik , if i� = j for some �,

0, otherwise.

For the action of a0, note that vN appears in the basis element v(I) if and only if it occurs in
the last position, i.e. vik = vN , and define

a0v(I) =
{

(−1)k−1q · v1 ∧ vi1 ∧ · · · ∧ vik−1 , if ik = N ,

0, otherwise.

The sign appears in a0v(I) because of the equality

q · vi1 ∧ · · · ∧ vik−1 ∧ v1 = (−1)k−1q · v1 ∧ vi1 ∧ · · · ∧ vik−1 .

Remark 4.3 It follows that a jv(I) = 0 if the sequence I contains j + 1 or if it does not
contain j . In other words, a j acts by replacing v j by v j+1. If this creates a wedge expression
with two factors equal to v j+1, the result is zero. Thus, for any monomial a( j) there is a
unique increasing sequence J = {1 ≤ j1 < · · · < jk ≤ N } with k minimal on which the
monomial acts nontrivially.

In the graphical description, a j moves a particle clockwise from position j to position
j +1, and one records ‘passing position 0’ by multiplying by±q as illustrated by the particle
configurations in Fig. 3.

It is easy to verify that the defining relations for n̂TLN hold for this action, assuming that
N ≥ 3. Hence we obtain

(a) (b) (c)

Fig. 3 Examples for the action of n̂TLN on a particle configuration. a a6(v1 ∧ v5 ∧ v6) = v1 ∧ v5 ∧ v7, b
a7a1a6(v1 ∧ v5 ∧ v6) = v2 ∧ v5 ∧ v0, c a0(v5 ∧ v0) = −q · v1 ∧ v5
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The center of the affine nilTemperley–Lieb algebra 421

Lemma 4.4 (a) Definition 4.2 gives a representation of n̂TLN on V.
(b) The number of wedges (i.e., the number of particles) remains constant under the action

of the generators ai , so that V =⊕N
k=0

(

k[q] ⊗∧k kN
)

is a direct sum decomposition

of V as an n̂TLN -module.

The following crucial statement is taken from [2, Prop. 2.4.1] and [12, Prop. 9.1.(2)]. We
will give a detailed proof adapted to our notation in Sect. 8.

Theorem 4.5 The action from Definition 4.2 gives a faithful representation of n̂TLN on V
when N ≥ 3.

From now on, we will identify elements of n̂TLN with their action on the particle config-
urations of the graphical representation.

Remark 4.6 The spaces k[q] ⊗ ∧0 kN and k[q] ⊗ ∧N kN are trivial summands in V on
which every generator ai acts as 0, and so they may be ignored when proving Theorem 4.5.

For a standard basis element v(I) of 1 ≤ k ≤ N−1wedges corresponding to an increasing
sequence I = {1 ≤ i1 < · · · < ik ≤ N }, the next lemma defines a certain monomial a(Î) that
projects v(I) onto (−1)k−1q v(I) and sends v(I′) to zero for I′ �= I. Before stating the result,
we give an example to demonstrate in the graphical description how this projector will be
defined.

Example 4.7 Let N = 8, and consider the particle configuration v(I) = v1 ∧ v5 ∧ v6. With
a(̂1 5 6) = (a0a7)·(a4a3a2)·(a1a5a6)weobtaina(̂1 5 6)·v1∧v5∧v6 = (−1)2q·v1∧v5∧v6,
which looks as follows in the graphical description (Fig. 4).

The factor a1a5a6 moves every particle one step forward clockwise. It is critical that we
start bymoving the particle at position 6 before moving the particle at position 5, as otherwise
the result would be zero. But since there is a ‘gap’ at position 7, we can move the particle
from site 6 to 7, and afterwards the particle from site 5 to 6, without obtaining zero. The
assumption that k < N ensures such a gap always exists.

After applying a1a5a6, the particles are at positions 2, 6, and 7. The particle previously
at position 5 is now at position 6, which is where we want a particle to be. The particle
currently at position 2 can be moved to position 5 by applying the product a4a3a2. The
particle now at position 7 can be moved by a0a7 to position 1. Hence, the result of applying
(a0a7) · (a4a3a2) · (a1a5a6) is the same particle configuration as the original one. However,
the answer must be multiplied by±q , since applying a0a7 involves crossing the zero position
once. To determine the sign, note from Definition 4.2 that (a0a7) · (a4a3a2) · (a1a5a6)(v1 ∧
v5 ∧ v6) = q · v5 ∧ v6 ∧ v1 = (−1)2q · v1 ∧ v5 ∧ v6, so the sign is +.

Now we describe the general procedure:

Fig. 4 The action of a(̂1 5 6) on
the particle configuration
v1 ∧ v5 ∧ v6

123



422 G. Benkart, J. Meinel

Lemma 4.8 Assume v(I) is a particle configuration, where I = {1 ≤ i1 < · · · < ik ≤ N }
is an increasing sequence and 1 ≤ k ≤ N − 1. Then there exists an index � such that
i� + 1 < i�+1 (or ik + 1 < i1), i.e. the sequence has a ‘gap’ between i� and i�+1. Split the
sequence I into the two parts {i1 < · · · < i�} and {i�+1 < · · · < ik}. Set

a(Î) :=(ai1−1ai1−2 . . . aik+2aik+1) ·
k−1
∏

s=1

(ais+1−1ais+1−2 . . . ais+2ais+1)

· (ai�+1ai�+2 . . . aik−1aik ) · (ai1ai2 . . . ai�−1ai� ), (*)

where the indices are modulo N in the factor (ai1−1ai1−2 . . . aik+2aik+1). Then

a(Î)v(I′) =
{

(−1)k−1q · v(I) if I′ = I,

0 for all I′ �= I (of any length),

and a(Î) has ZN -degree (1, 1, . . . , 1).

Proof The assertions can be seen using the graphical realization ofV. The terms in the second
line of equation (*) move a particle at site i j ∈ I one step forward to i j + 1 for each j , while
the terms in the first line send the particle from i j + 1 to the original position of i j+1.

Consider first a(Î)v(I). By applying (ai�+1ai�+2 . . . aik−1aik ) · (ai1ai2 . . . ai�−1ai� ), every
particle is first moved clockwise by one position. By our choice of the index i�, we avoid
mapping the whole particle configuration to zero. After that step, every particle is moved by
one of the factors (ais+1−1ais+1−2 . . . ais+2ais+1) to the original position of its successor in
the sequence I, so the particle configuration remains the same. One of the particles has passed
the zero position, so we have to multiply by ±q . Definition 4.2 tells us the appropriate sign
is (−1)k−1.

Now consider a(Î)v(I′) for I′ �= I. The monomial (ai�+1ai�+2 . . . aik−1aik ) · (ai1ai2 . . .

ai�−1ai� ) expects a particle at each of the sites i1, . . . , ik , so if any of these positions is empty
in v(I′), the result of applying a(Î) is zero. If the positions i1, . . . , ik are already filled, and
there is an additional particle somewhere, multiplication by (ai�+1−1ai�+1−2 . . . ai�+2ai�+1)

will cause two particles to be at the same position, hence the result is again zero.
Since every a j appears in a(Î) exactly once, the monomial a(Î) has ZN -degree

(1, 1, . . . , 1). ��
Example 4.9 In the previous example, N = 8, I = (1, 5, 6), and we may assume the two
subsequences are (1) and (5, 6). Then the terms in the second line of (*) are (a5a6) · (a1) =
a1a5a6. The term corresponding to j = 1 in the product on the first line of (*) is a4a3a2,
and the expression corresponding to j = 2 is empty, hence taken to be 1. The first factor
on the first line is a0a7. Thus, for I = (1, 5, 6), a(Î) = (a0a7) · (a4a3a2) · (a1a5a6), as in
Example 4.7. If the gap between 6 and 0 is used instead, the right-hand factor of the second
line is a1a5a6 and the left-hand factor is 1. The factors in the first line remain the same, and
so one obtains the same expression for a(Î).

Remark 4.10 Because V is a faithful module, a(Î) is, as an element in n̂TLN (i.e. up
to reordering according to the defining relations), uniquely determined by the increas-
ing sequence I. One can read off I from a(Î) as follows: In the defining equation (*) of
a(Î), the factors in the first line are pairwise commuting. The underlying subsequence
(is+1−1, is+1−2, . . . , is+2, is+1) corresponding to the factor ais+1−1ais+1−2 . . . ais+2ais+1

of a(Î) is a decreasing sequence. After all such decreasing sequences are removed from a(Î),

what remains is a product of generators a j with an increasing subsequence of indices or a
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product of two such subsequences corresponding to the factors in the second line. This is I.
Given any monomial a(r) of ZN -degree (1, . . . , 1), one can rewrite it using the relations in
n̂TLN so that it is of the form a(Î) for some increasing sequence I. Then v(I) is the unique
standard basis element upon which a(r) = a(Î) acts by multiplication by ±q .

5 Description of the center

In this section, we give an explicit description of the center CN of n̂TLN . We start with the
following initial characterisation of the central elements:

Lemma 5.1 Any central element c in n̂TLN with constant term 0 is a linear combination of
monomials a( j) = a j1 · · · · · a jm where every generator ai , 0 ≤ i ≤ N − 1, appears at least
once. In particular, a homogeneous nonconstant central element c has Z-degree at least N .

Proof Assume c = ∑ j c j a( j), where c j ∈ k for all j . By Lemma 3.1, we can assume c is

a homogeneous central element with respect to the ZN -grading. By our assumption, c /∈ k.
For all i , we need to show that ai occurs in each monomial a( j) appearing in c. Without loss
of generality, we show this for i = 0. If some summand is missing a0, then no summand
contains a0 because c is homogeneous. Hence a0a( j) �= 0 and a( j)a0 �= 0 for all j with
c j �= 0, and since a0c = ca0, none of the a( j) can contain the factor a1 either, as otherwise
the factor a0 cannot pass through c from left to right (so also aN−1 cannot be contained in
the a( j)). Proceeding inductively, we see that all a( j) must be a constant, contrary to our
assumption. ��

The next proposition states that on the standard wedge basis vector v(I) of V, any central
element acts via multiplication by a polynomial pk ∈ k[q] that only depends on the length
k = |I| of the increasing sequence I = {1 ≤ i1 < · · · < ik ≤ N }. In other words, the
decomposition of V into the summands k[q] ⊗∧k kN is a decomposition with respect to
different central characters (apart from the two trivial summands for k ∈ {0, N }).
Proposition 5.2 For any central element c ∈ n̂TLN and all increasing sequences I with fixed
length k, there is some element pk ∈ k[q] such that cv(I) = pk v(I).

Proof We may assume c is a nonconstant ZN -homogeneous central element of n̂TLN . For
k ∈ {0, N }, the action of a generator ai on a monomial of length k is 0, so pk = 0 for such
values of k. Now consider 1 ≤ k ≤ N − 1, and suppose that I = {1 ≤ i1 < · · · < ik ≤ N } is
an increasing sequence of length k. According to Lemma 4.4 (b), the number of wedges in a
vector remains constant under the action of the ai . Hence cv(I) =∑|I′|=k cI′ v(I′) for some
polynomials cI′ ∈ k[q]. We want to prove that cI′ = 0 for all I′ �= I.

We have shown in Lemma 4.8 that to each increasing sequence J ⊂ {1, . . . , N } there
corresponds a monomial a(Ĵ) ∈ n̂TLN that allows us to select a single basis vector:

a(Ĵ)v(I) =
{

(−1)k−1qv(J) if I = J,

0 otherwise.

Thus, for J �= I, we see that

0 = c(a(Ĵ)v(I)) = a(Ĵ)(cv(I)) = a(Ĵ)

⎛

⎝

∑

|I′|=k

cI′ v(I′)

⎞

⎠ = cJ (−1)k−1qv(J),
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implying cJ = 0 for J �= I. Hence, we may assume for each increasing sequence I that
cv(I) = pI v(I) for some polynomial pI ∈ k[q].

Now it is left to show that pI = pI′ for all I
′ with |I′| = |I| = k. It is enough to verify this

for I, I′ that differ in exactly one entry, i.e. is = i , i ′s = i + 1, and i� = i ′� for all � �= s, for
some 1 ≤ s ≤ k and i ∈ Z/NZ. If 1 ≤ i ≤ N − 1, we have

pI′ v(I′) = cv(I′) = c(aiv(I)) = ai (cv(I)) = ai (pI v(I)) = pI v(I′),

and if i = 0, we get

(−1)k−1qpI′ v(I′) = (−1)k−1qcv(I′) = c(a0v(I)) = a0(cv(I)) = a0(pI v(I))

= (−1)k−1qpI v(I′).

Hence, pI′ = pI, and this common polynomial is the desired polynomial pk . ��
Corollary 5.3 Any central element in n̂TLN with constant term 0 acts on a standard basis
vector v(I) ∈ V as multiplication by an element of qk[q].
Proof According to Lemma 5.1, each summand of such a central element must contain the
factor a0, and a0 acts on a wedge product by 0 or multiplication by ±q . ��

Now we are ready to introduce nontrivial central elements in n̂TLN . For each 1 ≤ k ≤
N − 1, set

tk := (−1)k−1
∑

|I|=k

a(Î), (1)

where the monomials a(Î) correspond to increasing sequences I = {1 ≤ i1 < · · · < ik ≤ N }
of length k as defined in Lemma 4.8.

Example 5.4 In n̂TL3:

t1 = a2a1a0 + a0a2a1 + a1a0a2,

t2 = −a0a1a2 − a1a2a0 − a2a0a1.

In n̂TL4:

t1 = a3a2a1a0 + a0a3a2a1 + a1a0a3a2 + a2a1a0a3,

t2 = −a0a3a1a2 − a0a2a1a3 − a3a2a0a1 − a1a0a2a3 − a1a3a0a2 − a2a1a3a0

t3 = a0a1a2a3 + a1a2a3a0 + a2a3a0a1 + a3a0a1a2.

In the graphical realization of V, tk acts by annihilating all particle configurations whose
number of particles is different from k. For particle configurations having k particles, every
particle is moved clockwise to the original site of the next particle. Hence, the particle
configuration itself remains fixed by the action of tk (and it is multiplied with (−1)2(k−1)q =
q , since a particle has been moved through position 0). All the tk have ZN -degree equal to
(1, . . . , 1) andZ-degree equal to N . Any monomial whose ZN -degree is (1, . . . , 1) occurs as
a summand in some central element (after possibly reordering the factors), and the number
of summands of tk equals

(N
k

) = dim(
∧k kN ); see Remark 4.10.

Theorem 5.5 1. The tk are central for all 1 ≤ k ≤ N − 1, and the center of n̂TLN is
generated by 1 and the tk , 1 ≤ k ≤ N − 1.
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2. The subalgebra generated by tk is isomorphic to the polynomial ring k[q] for all 1 ≤
k ≤ N −1. Moreover tk t� = 0 for all k �= �. Hence the center of n̂TLN is the subalgebra

CN = k ⊕ t1k[t1] ⊕ · · · ⊕ tN−1k[tN−1] ∼= k[t1, . . . , tN−1]
(tk t� | k �= �)

.

Proof 1. The action of tk on V is the projection onto the n̂TLN -submodule k[q] ⊗∧k kN

followed by multiplication by q . This commutes with the action of every other element
of n̂TLN . Since V is a faithful module, tk commutes with any element of n̂TLN . As we
have seen in Proposition 5.2, any central element c without constant term acts on the
summand k[q]⊗∧k kN via multiplication by some polynomial pck ∈ qk[q]. Once again
using the faithfulness of V, we get that c =∑N−1

k=1 pck(tk).
2. Recall that k[q]⊗∧k kN is a free k[q]-module of rank

(N
k

)

. Since tk acts bymultiplication
with q on that module, the subalgebra of n̂TLN generated by tk must be isomorphic to
the polynomial ring k[q]. Since a(Ĵ)a(Î) = 0 for all J �= I, we get tkt� = 0 for k �= �,
as they consist of pairwise distinct summands. ��
Theorem 5.5 enables us to describe the k-algebra Endn̂TLN

(W) of n̂TLN -endomorphisms

of the space of nontrivial particle configurations W := ⊕N−1
k=1

(

k[q] ⊗∧k kN
)

⊂ V. We

first observe that onWmultiplication by q is given by the action of a central element in CN ,
therefore it is justified to speak about k[q]-linearity of a n̂TLN -endomorphism of W.

Lemma 5.6 Endn̂TLN (W) ⊂ Endk[q](W), hence any n̂TLN -module endomorphism ϕ of W
is k[q]-linear.
Proof Observe that

∑N−1
k=1 tk ∈ n̂TLN acts by multiplication by q on every element in W.

Therefore multiplication by q commutes with the application of every ϕ ∈ Endn̂TLN
(W).

��
Proposition 5.7 The endomorphism algebra Endn̂TLN (W) is isomorphic to a direct sum of
N − 1 polynomial algebras k[T1] ⊕ · · · ⊕ k[TN−1].
Proof The proof is very similar to that of Proposition 5.2. First we show that ϕ(v(I)) is a
k[q]-linear multiple of v(I) for any ϕ ∈ Endn̂TLN

(W) and any increasing sequence I. This
statement holds if and only if ±qϕ(v(I)) ∈ k[q] v(I). Indeed, by Lemmas 4.8 and 5.6 we
get

±qϕ(v(I)) = ϕ(±qv(I)) = ϕ(a(Î)v(I)) = a(Î)ϕ(v(I)) ∈ k[q] v(I).

Therefore, we can write ϕ(v(I)) = pI · v(I) for some polynomial pI ∈ k[q]. Note that this
implies

Endn̂TLN

(

N−1
⊕

k=1

(

k[q] ⊗∧kkN
)

)

=
N−1
⊕

k=1

(

Endn̂TLN

(

k[q] ⊗∧kkN
))

.

What remains is to show that these polynomials only depend on the number of particles in
I, in other words there exists pk ∈ k[q] so that pI = pk for all I with |I| = k. Again it
suffices to show this for two sequences I, I′ of length k that differ in exactly one entry. So
say is = i , i ′s = i + 1, and i� = i ′� for all � �= s, for some 1 ≤ s ≤ k and i ∈ Z/NZ. When
1 ≤ i ≤ N − 1,

pI′ v(I′) = ϕ(v(I′)) = ϕ(aiv(I)) = aiϕ(v(I)) = ai (pI v(I)) = pI v(I′),
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and when i = 0,

(−1)k−1qpI′ v(I′) = (−1)k−1qϕ(v(I′)) = ϕ(a0v(I)) = a0ϕ(v(I)) = a0(pI v(I))

= (−1)k−1qpI v(I′).

Hence we can write ϕ = ∑N−1
k=1 pkπk where πk is the projection onto k[q] ⊗∧k kN , and

we get that

Endn̂TLN

(

k[q] ⊗∧kkN
)

= k[Tk],

where Tk denotes the multiplication action of the central element tk , which is indeed a n̂TLN -
module endomorphism ofW. Thus, Endn̂TLN

(W) is isomorphic to a direct sum of polynomial
algebras as claimed. ��

Remark 5.8 The arguments in the proof of Proposition 5.7 remain valid even if we specialize
the indeterminate q to some element in k \ {0}. In this case, we obtain that the summands
∧k kN are simple modules and Endn̂TLN

(⊕N−1
k=1

∧k kN
) ∼= kN−1. For q = 0, the situation

is more complicated: If q is specialized to zero, the generator a0 acts by zero on the module.
The action of n̂TLN factorizes over nTLN , and the module

∧k kN is no longer simple.
Instead it has a one-dimensional head spanned by the particle configuration v(1, . . . , k),
and any endomorphism is given by choosing an image of this top configuration. It is always
possible to map it to itself and to the one-dimensional socle spanned by v(N −k, . . . , N ), but
in general there are more endomorphisms. For example, in

∧4 k8, the image of v(1, 2, 3, 4)
may be any linear combination of v(1, 2, 3, 4), v(2, 3, 4, 8), v(3, 4, 7, 8), v(4, 6, 7, 8) and

v(5, 6, 7, 8), so that Endn̂TL8

(

∧4 k8
)

is 5-dimensional.

6 The affine nilTemperley–Lieb algebra is finitely generated over its center

The affine nilTemperley–Lieb algebra is infinite dimensional when N ≥ 3; however, the
following finiteness result holds:

Theorem 6.1 The algebra n̂TLN is finitely generated over its center.

Proof Given an arbitrary monomial a( j) ∈ n̂TLN , we first factor it as a( j ′) · a( j (0)) in the
following way: Take the minimal particle configuration J = {1 ≤ j1 < · · · < jk ≤ N }
on which the monomial a( j) acts nontrivially; see Remark 4.3. The monomial a( j) moves
all of the particles by at least one step, because the particle configuration was assumed
to be minimal. Using the faithfulness of the representation, we know that we may reorder
the monomial a( j) so that first each particle is moved one step clockwise, and afterwards
the remaining particle moves are carried out. Hence, we may choose some factorization
a( j) = a( j ′) · a( j (0)), where j (0) is a sequence obtained by permuting j1, . . . , jk so that the
particle at position jr is moved one step clockwise by the action of a jr for all 1 ≤ r ≤ k.
The remaining particle moves are carried out by a( j ′).

In Sect. 8, this decomposition is explicitly constructed (not using the faithful representa-
tion).

Next, we want to find an expression of the form

a( j) = afin · tnk · a( j (0)),
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where afin is a monomial of some subalgebra inTLN of n̂TLN , tnk is in the center of n̂TLN ,
and a( j (0)) is the above factor. Here

inTLN = 〈a0, . . . , ai−1, ai+1, . . . , aN−1〉 (2)

denotes a copy of the finite nilTemperley–Lieb algebra nTLN sitting in n̂TLN . To accomplish
this, we have to subdivide the action of a( j) on the particle configuration J = { j1 < · · · < jk}
one more time. There are two cases:

1. There is an index i not appearing in j ′. In this case, a( j ′) is an element of inTLN and
we are done.

2. All indices appear at least n ≥ 1 times in j ′. Let us investigate the action of a( j ′) on
the particle configuration v(I) = a( j (0))v(J), where I = { j1 + 1, . . . , jk + 1}. Note
that I is the minimal particle configuration for a( j ′). Each of the particles in I is moved
by a( j ′) to the position of the next particle in the sequence I, because there is no index
missing (a missing index is equivalent to a particle being stopped before reaching the
position of its successor), before possibly continuing to move along the circle. Again
invoking the faithfulness of the representation, we can rewrite a( j ′) = a( j ′′) · a(Î)n ,
with the monomial a(Î) from Lemma 4.8. For maximal n, the remaining factor a( j ′′) is
an element of inTLN for some i . Observe that a(Î)na( j (0)) = tnka( j (0)), which follows
immediately from the definition of tk and Lemma 4.8.

Therefore, we have shown that

a( j) = a( j ′) · a( j (0)) = afin · a(Î)n · a( j (0)) = afin · tnk · a( j (0)),

where n = 0 in the first case. Since there are only finitely many monomials in
0nTLN , 1nTLN , . . . , N−1nTLN and only finitely many monomials a( j (0)) such that every

index 0, 1, . . . , N − 1 occurs at most once in the sequence a( j (0)), the affine nilTemperley–
Lieb algebra is indeed finitely generated over its center. ��
Remark 6.2 The affine nilTemperley–Lieb algebra is not free over its center (see [18]).

7 Embeddings of affine nilTemperley–Lieb algebras

In the proof of Theorem 6.1, we have used the N obvious embeddings of nTLN into n̂TLN

coming from the N different embeddings of the Coxeter graph AN−1 into ÃN−1. Next we
construct N embeddings of n̂TLN into n̂TLN+1. They correspond to the subdivision of an
edge of ÃN−1 by inserting a vertex on the edge to obtain ÃN .

Theorem 7.1 Let N ≥ 3. For any number 0 ≤ m ≤ N − 1, there is a unital embedding of
algebras εm : n̂TLN → n̂TLN+1 given by

ai �→

⎧

⎪

⎨

⎪

⎩

ai for 0 ≤ i ≤ m − 1,

am+1am for i = m,

ai+1 for m + 1 ≤ i ≤ N − 1.

(3)

Lemma 7.2 For N ≥ 3, the map εm from n̂TLN to n̂TLN+1 given by (3) is an algebra
homomorphism.
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Fig. 5 ε5(n̂TL7) ⊂ n̂TL8: The
action of ε5(a0a6a5a4) =
ã0ã7ã6ã5ã4 on the particle
configuration v(4)

Proof Due to the circular nature of the relations, it suffices to check this for ε0. This amounts
to showing the following, since all the other relations are readily apparent. To avoid confusion,
we indicate generators of n̂TLN+1 in these calculations by ãi :

(ã1ã0)(ã1ã0) = ã1(ã0ã1ã0) = 0, ã2(ã1ã0)ã2 = (ã2ã1ã2)ã0 = 0, ãN (ã1ã0)ãN = ã1(ãN ã0ãN ) = 0,

(ã1ã0)ã2(ã1ã0) = (ã1ã2)(ã0ã1ã0) = 0, (ã1ã0)ãN (ã1ã0) = (ã1ã0ã1)(ãN ã0) = 0.

Remark 7.3 How should one visualize the action of εm(n̂TLN ) ⊂ n̂TLN+1 on the particle
configurations on a circle with N + 1 positions? Except for am , all generators of n̂TLN are
mapped to corresponding generators of n̂TLN+1. Theywill act as before, bymoving a particle
one step clockwise around the circle. Since am is mapped by εm to the product ãm+1ãm in
n̂TLN+1, it will move a particle from m to m + 2 as depicted in Fig. 5. In other words, the
elements in εm(n̂TLN ) do not move a particle to or from position m + 1.

Next we introduce a basis of n̂TLN that will enable us to see directly that these homo-
morphisms are embeddings. The basis has a simple description in terms of the graphical
representation V from Sect. 4. For any two particle configurations with 1 ≤ k ≤ N − 1
particles corresponding to the increasing sequences I = {1 ≤ i1 < · · · < ik ≤ N } and
J = {1 ≤ j1 < · · · < jk ≤ N }, there is a monomial in n̂TLN moving particles at the
positions J to the positions I. We require that every particle from J be moved by at least
one step, but we do not prescribe explicitly which of the j’s is mapped to which of the i’s.
For I �= J, take eIJ to be the monomial such that the power of q in eIJv(J) = ±q�v(I) is
minimal (under the assumption that every particle from J must be moved). By faithfulness of
the graphical representation, eIJ is uniquely determined. For I = J, we have eII = a(Î), the
special monomial defined in Sect. 4, hence eIIv(I) = ±qv(I). Observe that one can write
tk =∑|I|=k eII, where the sum runs over all possible increasing sequences I of length k, and

that t�keIJ is a monomial, since all but one summand vanish for k = |I|.
Remark 7.4 The condition that eIJ move all particles from J by at least one step guarantees
that it acts as zero on all particle configurations with fewer particles than |I| = |J|.
For example, when N = 7,

e(2)(1) = a1, e(0,2)(0,1) = a6a5a4a3a1a2a0a1.

(Note that a1 moves v(0, 1) to v(0, 2), but this does not satisfy the requisite property that all
the particles must be moved by at least one step.) If we apply the factorization of monomials
from Theorem 6.1 to eIJ, the minimality condition implies that eIJ = afin · 1 · a( j (0)), where

if J = { j1 < · · · < jk}, then j (0) is a sequence obtained by permuting the elements of J.

Theorem 7.5 The set of monomials

{1} ∪ {t�keIJ | � ∈ Z≥0, 1 ≤ |I| = |J| = k ≤ N − 1}
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defines a k-basis of the affine nilTemperley–Lieb algebra n̂TLN .

Proof First, observe that t�keIJ is indeed a monomial since |I| = k. We show that
the elements t�keIJ act k-linearly independently on the graphical representation V =
⊕N

k=0

(

k[q] ⊗∧k kN
)

. By Remark 7.4, the monomial eIJ acts by zero on summands

k[q] ⊗∧k′
kN for k′ < |I|. On k[q] ⊗∧|I| kN , the matrix representing the action of t�keIJ

relative to the standard basis has exactly one nonzero entry, and this one distinguishes all
monomials with the same minimal number of particles |I| = |J|. From these two observa-
tions, the linear independence follows. On the other hand, given any nonzero monomial in
n̂TLN , there exists a minimal particle configuration J on which it acts nontrivially. Recording
the image particle configuration I and the power of q , we conclude that there is some � so
that the element t�keIJ acts on V in the same way as the given monomial does. Due to the
faithfulness of this representation (see Theorem 4.5), the proposition follows. ��

In Sect. 8, a basis is constructed using a different approach (without relying on the faithful
representation). Both bases are labelled by pairs of particle configurations (pairs of increasing
sequences) together with a natural number �. Up to an index shift in the output configuration I

and a shift of the natural number �, the labelling sets agree, and both bases actually coincide.

Proof (Theorem 7.1) We have already proven in Lemma 7.2 that εm is an algebra homomor-
phism. Using Remark 7.3, observe that the monomial eIJ ∈ n̂TLN is mapped to a monomial
ẽI′J′ ∈ n̂TLN+1 (tilde again indicates in n̂TLN+1), where the new index sets are obtained by
i �→ i for 0 ≤ i ≤ m and i �→ i + 1 form+1 ≤ i ≤ N−1. The injectivity follows since basis

elements
(

∑

|K|=k eKK
)� ·eIJ of n̂TLN are mapped to basis elements

(

∑

|K′|=k ẽK′K′
)� · ẽI′J′

of n̂TLN+1. ��
Remark 7.6 It is possible to verify this theorem on generators and relations in the language
of Sect. 8 without using the graphical description.

Remark 7.7 Observe that these embeddings work specifically for the affine nilTemperley–
Lieb algebras but fail for the ordinary Temperley–Lieb algebras. The relation that fails to
hold is the braid relation for Temperley–Lieb algebras, i.e. aiai±1ai = ai . Interestingly, the
relation a2i = δai is respected for δ = 1.

8 A normal form and the faithfulness of the graphical representation

In this section, we prove Theorem 4.5 which we recall here:

Proposition For N ≥ 3, V is a faithful n̂TLN -module with respect to the action described
in Definition 4.2.

For the proof, wewill explicitly prove the linear independence of thematrices representing
the monomials in n̂TLN . We proceed in three steps: (1) First, we define a normal form for the
monomials. (2) Next, we find a bijection between the monomials and certain pairs of particle
configurations together with a power of q . In other words, we find a basis for n̂TLN and
describe a labeling set. (3) The final step is the description of the action of a monomial on V
using its matrix realization. The matrices representing the monomials have a distinguished
nonzero entry that is given in terms of the particle configurations and the power of q from
the bijection, and for most matrices, this is the only nonzero entry. From this description it
will quickly follow that all these matrices are linearly independent.
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8.1 Some useful facts

The following lemma characterises nonzero monomials in n̂TLN . They correspond to fully
commutative elements in ̂TLN , see [9].

Lemma 8.1 The monomial a( j) �= 0 if and only if for any two neighbouring appearances
of ai in a( j) there are exactly one ai+1 and one ai−1 in between, apart from possible factors
a� for � �= i − 1, i, i + 1 (indices to be understood modulo N).

According to this result, two consecutive ai have to enclose ai+1 and ai−1, i.e.
ai . . . ai±1 . . . ai∓1 . . . ai , with the dots being possible products of a�’s with � �= i ± 1, i .
This lemma is a special case of [9, Lem. 2.6]; here is a quick proof for the convenience of
the reader.

Proof The monomial a( j) is zero if and only if we can bring two neighbouring factors ai
together so that we obtain either a2i (‘square’) or aiai±1ai (‘braid’). But expressions of the
form ai . . . ai±1 . . . ai∓1 . . . ai cannot be resolved this way by commutativity relations. On
the other hand, if there are two neighbouring factors ai with either none or only one of the
terms ai±1 in between, we get after commutations either a2i or aiai±1ai . If there are at least
two factors ai+1 (or ai−1) in between the two ai , one can repeat the argument: Either we can
create a square or a braid, or we have at least two factors of the same kind in between. In
the case of a square or a braid we are done; otherwise we pick two neighbouring ai+k in the
kth step of the argument. Since we always consider the space in between two neighbouring
factors ai , ai+1, . . . , ai+k , none of the previous ai , ai+1, . . . , ai+k−1 occurs between the two
neighbouring ai+k . Unless we found a square or a braid in an earlier step, we end up in step
N − 1 with a subexpression of the form aramr±1ar which is zero for any m ≥ 0. ��

Definition 8.2 For any i ∈ {0, 1, . . . , N − 1}, we define a (clockwise) order i≺ on the set
{0, 1, . . . , N − 1} starting at i by

i
i≺ i + 1

i≺ . . .
i≺ i + N − 1.

8.2 Step 1: A normal form

Given an arbitrary nonzero monomial a( j) in n̂TLN , reorder its factors according to the
following algorithm (as usual, the indices are considered modulo N ):

1. Find all factors ai in a( j) with no ai−1 to their right. We denote them by ai1 , . . . , aik ,
ordered according to their appearance in a( j); in other words, a( j) is of the form

a( j) = . . . ai1 . . . ai2 . . . . . . aik .
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2. Move the ai1 , . . . , aik to the far right, without changing their internal order,

a( j) = a( j ′) · (ai1ai2 . . . aik ) = a( j ′) · a( j (0))

for j (0) = (i1, . . . , ik) and some sequence j ′ = ( j with i1, . . . , ik removed). This is
possible because

(a) by assumption, there is no ai−1 to the right of an ai in this list;
(b) if for some i , ai+1 occurs to the right of some ai , then either ai . . . ai+1 . . . ai would

occur as a subword without ai−1 in between, hence a( j) = 0, or else ai+1 does not
have ai to its right, so it is one of the ai1 , . . . , aik itself, and will be moved to the far
right of a( j), too;

(c) ai commutes with all a� for � �= i − 1, i + 1.

3. Repeat for a( j ′) until we get

a( j) = a( j (m)) · a( j (m−1)) · · · · · a( j (1)) · a( j (0))

for sequences j (m), . . . , j (1) obtained successively the same way as described above.
Notice:

• Inside a sequence j (n), every index occurs at most once. If two consecutive indices

occur within j (n), they are increasingly ordered using the order
ik≺ from Definition

8.2.
• For two consecutive sequences j (n+1), j (n) and for every index i (n+1)

r occurring in

j (n+1), we can find some index i (n)
s in j (n) such that i (n+1)

r = i (n)
s + 1.

• From that property, it also follows that the length of j (n+1) is less or equal than the

length of j (n).

4. Reorder the factors a( j (m)), . . . , a( j (1)), a( j (0)) internally:

(a) Start with a( j (0)). There is some 0 ≤ ı̂ ≤ N − 1 which does not occur in j (0), but

ı̂ − 1 occurs. For example, this is satisfied by ı̂ = ik + 1, as ik occurs in j (0) and is to
the right of every other factor of a( j). Choose the largest such ı̂ (with respect to the

usual order). Then we can move ı̂ − 1 to the very right of the sequence j (0), because
ı̂ is not present, and ı̂ −2 may only occur to the left of ı̂ −1 due to the construction of
j (0). We proceed in the same way with those indices ı̂−2, ı̂ −3, . . . , ı̂ −(N −1) that

appear in j (0). The result is a reordering of the sequence j (0) so that it is increasing

from left to right with respect to
ı̂≺.

(b) Repeat with all other factors a( j (1)), a( j (2)), . . . , a( j (m)) taking as the initial right-
hand index of the sequence ı̂, ı̂+1, . . . , ı̂+m−1 respectively, and reordering within

each a( j (n)) so that the indices are increasing from left to right with respect to
ı̂+n≺ .

Throughout, the index ı̂ is the one from step (4a).
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Example 8.3 As an example for n̂TL7, suppose a( j) = a(6 4 2 1 3 5 4 2 0 6 1 3 2 5). (We
omit the commas to simplify the notation.)

Find all ai without ai−1 to their right: a(6 4 2 1 3 5 4 2 0 6 1 3 2 5)

Move them to the far right, and do not
change their internal order:

a(6 4 2 1 3 5 4 2 0 6 3) · a(1 2 5)

Repeat: a(6 4 2 3 5 4 1 2 0 6 3) · a(1 2 5)

a(6 4 2 3 5 4 1 0) · a(2 6 3) · a(1 2 5)
a(6 4 2 3 5 4 1 0) · a(2 6 3) · a(1 2 5)

a(6 4 2 5 1) · a(3 4 0) · a(2 6 3) · a(1 2 5)
a(6 4 2 5 1) · a(3 4 0) · a(2 6 3) · a(1 2 5)

a(6 2) · a(4 5 1) · a(3 4 0) · a(2 6 3) · a(1 2 5)
With the right-hand indices of the
a( j (n)), n ≥ 0, arranged according to

ı̂ + m − 1
ı̂� . . .

ı̂� ı̂ + 1
ı̂� ı̂ = 6

from left to right, reorder the factors in
each a( j (n)) increasingly with respect

to
ı̂+n≺ from left to right:

a(6 2) · a(4 5 1) · a(3 4 0) · a(2 3 6) · a(1 2 5)

As a shorthand notation, in the following we often identify the index sequence j with a( j)
(and manipulate j according to the same relations as a( j)) as demonstrated in the following
example.

Example 8.4 Let N = 6.

(5 1 2 3 0 4 1 5 0 2 3 1 4 5 0 2 3 1 4 2) = (1)(5 0 2)(3 4 5 1)(2 3 4 0)(1 2 3 5)(0 1 2 4)

= (1 5 0 2 3 4 5 1 2 3 4 0 1 2 3 5 0 1 2 4).

Lemma 8.5 Let a( j) be a nonzero monomial in n̂TLN , where we use as always the notation

from Section 2. Let a( j (m)), a( j (m−1)), . . . , a( j (1)), a( j (0)) be the monomials constructed
by the algorithm above.

1. The equality a( j) = a( j (m))a( j (m−1)) · · · a( j (1))a( j (0)) holds in n̂TLN .

2. Given any two representatives a( j), a( j#) of the same element in n̂TLN , the above

algorithm creates the same representative a( j (m))a( j (m−1)) · · · a( j (1))a( j (0)) for both

a( j) and a( j#).

Proof 1. The algorithm never interchanges the order of two factors ai , ai±1 with consec-
utive indices within a( j). Hence, the reordering of the factors of a( j) uses only the

commutativity relation aia j = a jai for i − j �= ±1 mod N of n̂TLN .
2. Two monomials a( j), a( j#) in n̂TLN are equal if and only if they only differ by

applications of commutativity relations aia j = a jai for i − j �= ±1 mod N , hence,
if and only if they contain the same number of factors ai for each i and the rela-
tive position of each ai and ai±1 is the same. Since the outcome of the algorithm
depends only on the relative positions of consecutive indices, the resulting decompo-
sition a( j (m))a( j (m−1)) · · · a( j (1))a( j (0)) is the same.

��
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We have shown the following. In stating this result and subsequently, whenever we refer
to monomials in normal form, we assume the monomial is nonzero and nonconstant, in
particular the sequence j is nonempty.

Theorem 8.6 Assume N ≥ 3.

1. The algorithm in Step 1 above provides a normal form for nonzero monomials a( j) in

the generators ai of n̂TLN , or equivalently for nonzero fully commutative monomials in
̂TLN , so that

a( j) = (a(m)
i1

. . . a(m)
ik

) . . . (a(n+1)
i1

. . . a(n+1)
ik

)(a(n)
i1

. . . a(n)
ik

) . . . (a(1)
i1

. . . a(1)
ik

)(ai1 . . . aik ),

where a(n)
i�

∈ {1, a0, a1, . . . , aN−1} for all 1 ≤ n ≤ m, 1 ≤ � ≤ k, and

a(n+1)
i�

∈
{

{1} if a(n)
i�

= 1,

{1, a j+1} if a(n)
i�

= a j .

The factors ai1 , . . . , aik are determined by the property that the generator ai�−1 does
not appear to the right of ai� in the original presentation of the monomial. The internal

ordering of the factors is increasing with respect to the relation
ı̂�, as in Step (4a) of

the normal form algorithm, where ı̂ is the largest value in {0, 1, . . . , N − 1} such that
ı̂ − 1 /∈ {i1, . . . , ik}, but ı̂ ∈ {i1, . . . , ik}.

2. The set {a( j) in normal form} ∪ {1} is a k-basis of n̂TLN .

8.3 Step 2: Labelling of basis elements

Definition 8.7 Given a( j) = a( j (m))a( j (m−1)) · · · a( j (1))a( j (0)) in normal form, we call

j (�) the �th block of j , and a string of indices of maximal length of the form is ∈ j (0), is+1 ∈
j (1), is + 2 ∈ j (2), . . . (modulo N ) the sth strand of j . We use the notation [. . . , is + 1, is]
for the strands.

Example 8.8 Let N = 6, and consider Example 8.4 once again, where

j = (1 5 0 2 3 4 5 1 2 3 4 0 1 2 3 5 0 1 2 4).

The blocks are j (0) = (0124), j (1) = (1235), j (2) = (2340), j (3) = (3451), j (4) = (502),

and j (5) = (1). The strands are [3210], [54321], [105432] and [21054]. In particular, strands
(and blocks) can have different lengths, but the longest strand has length m = 6.

Each monomial a( j) ∈ n̂TLN determines two sets Iinj , Ioutj and an integer � j ∈ Z≥0 as

follows:

Iinj = {i ∈ {0, 1, . . . , N − 1} | no i − 1 to the right of i in j}
Ioutj = {i ∈ {0, 1, . . . , N − 1} | no i + 1 to the left of i in j}
� j = the number of zeros in j .

These are well defined because, as in the proof of Lemma 8.5, any element of n̂TLN is
uniquely determined by the number of factors ai and the relative position of each ai and
ai±1, for all i . The set Iinj equals the underlying set of j (0) in the normal form from the
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algorithm above. All strands of j begin with an element in Iinj and end with an element from

Ioutj .

The goal of this subsection is to show

Proposition 8.9 The mapping

ψ : {a( j) ∈ n̂TLN in normal form} → PN × PN × Z≥0 (4)

a( j) �→ (Iinj , Ioutj , � j ),

is injective, where PN is the power set of {0, 1, . . . , N − 1}.
Remark 8.10 The map ψ is defined so that in the graphical description of the representation
V of n̂TLN , the set Iinj equals the set of positions where a( j) expects a particle to be. The

set Ioutj equals the set of positions where a( j) moves the particles from Iinj , but each one is

translated by 1, that is,

a( j) applied to a particle at i ∈ Iinj gives a particle at j + 1 for some j ∈ Ioutj .

The map ψ is far from being surjective. An obvious constraint is that |Iinj | = |Ioutj |, and
furthermore, for some pairs (Iinj , Ioutj ), one can only obtain sufficiently large values � j .

To ease the presentation, we start by proving injectivity of the restriction ψ0 of ψ to those
monomials a( j) in normal form whose first element i1 of j (0) is 0. The proof itself will
amount to counting indices.

Proposition 8.11 The map

ψ0 : {a( j) ∈ n̂TLN in normal form, with i1 = 0} → PN × PN × Z≥0,

a( j) �→ (Iinj , Ioutj , � j )

is injective.

Before beginning the proof of this result, we note that for monomials a( j) with i1 = 0,

the inequality ik < N − 1 must hold in Iinj , since i1 = 0 implies that i1 − 1 = N − 1 is

not an element of Iinj . Consequently, the ordering of the indices in Iinj agrees with the natural

ordering of Z, so we can regard (Iinj ,<) as a subset of (Z,<) and replace the modular index

sequence j by an integral index sequence jZ such that jZ( mod N ) = j as follows:

Definition 8.12 Assume j = j (m) · · · · · j (1) · j (0) is a normal form sequence with j (0) =
{0 = i1 < · · · < ik < N − 1} and j (n) = (ih1 + n, . . . , ihk(n)

+ n) ⊆ (i1 + n, . . . , ik + n),

where indices in j (n) are modulo N and 1 ≤ k(n) ≤ k for all 1 ≤ n ≤ m. The integral
normal form sequence for j is

jZ = ( j (m))Z · · · · · ( j (1))Z · j (0) where ( j (n))Z := (ih1 + n, . . . , ihk(n)
+ n) ∈ Zk(n)

for n = 1, . . . ,m.

Example 8.13 We continue Example 8.4 with N = 6.

If j = (1 5 0 2 3 4 5 1 2 3 4 0 1 2 3 5 0 1 2 4),

then jZ = (7 5 6 8 3 4 5 7 2 3 4 6 1 2 3 5 0 1 2 4).
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Our proof of Proposition 8.11 will hinge upon the following technical lemma.

Lemma 8.14 Let jZ be the integral normal form sequence for j and let [is, . . . , is + ns] for
s = 1, . . . , k be the strands of jZ. Assume i1 = 0. Then

(a) n1 = i1 + n1 < i2 + n2 < · · · < ik + nk;
(b) ik + nk < i1 + n1 + N = n1 + N.

We postpone the proof of this result and proceed directly to proving the proposition.

Proof (Proposition 8.11) Since the sequence j will be fixed throughout the proof, we will

drop the subscript j on Iinj I
out
j , � j . To show the injectivity ofψ0, we consider the factorization

ψ0 = γ ◦ β ◦ α given by

ψ0 : a( j)
α�−→ a( jZ)

β�−→ ((Iin)Z, (Iout)Z)
γ�−→ (Iin, Iout, �),

where (Iin)Z = Iin and (Iout)Z = {i ∈ jZ | no i + 1 to the left of i} similar to the definition
of Iout. The map α replaces indices in Z/NZ by indices in Z as in Definition 8.12 above.
The map β is given by reading off (Iout)Z and (Iin)Z from jZ. The map γ sends the pair

((Iin)Z, (Iout)Z) to a triple consisting of the respective images Iin, Iout modulo N of the pair
and the integer � = 1 + ∑ �r where �r = � jr

N � for each jr ∈ (Iout)Z. The summand 1
corresponds to 0 = i1; all other occurrences of 0 are counted by

∑

�r . Now we check
injectivity.

The map α is clearly injective since jZ �→ jZ( mod N ) is a left inverse map.

To see that β is injective, we need to know that jZ can be uniquely reconstructed from

((Iin)Z, (Iout)Z). Observe that jZ is determined by knowing all the ‘strands’ is, is + 1, is +
2, . . . , is + ns for 1 ≤ s ≤ k, hence by assigning an element is + ns ∈ (Iout)Z to each
is ∈ (Iin)Z. But it follows from Lemma 8.14 (a) that i1 + n1 must be the smallest element of
(Iout)Z, i2 + n2 the second smallest, etc., so that the element is + ns is assigned to the sth
element in Iin, that is, to is .

Now to see that γ is injective, we need to recover ((Iin)Z, (Iout)Z) in a unique way from
(Iin, Iout, �). Write Iin = {0 = i1 < · · · < ik < N − 1}, and set (Iin)Z:=Iin. By Lemma
8.14 (a), we know that (Iout)Z is of the form (i1+n1 < · · · < ik +nk), and since the elements
of Iout have to be equal to the elements of (Iout)Z modulo N , we can write ir +nr = N�r +dr
for �r = � ir+nr

N � and some dr ∈ Iout. Comparing �r and �s for r < s, we have

N�r ≤ N�r + dr = ir + nr < is + ns = N�s + ds ≤ N (�s + 1).

So �r < �s + 1, i.e. �r ≤ �s . Similarly, we obtain from (b) of Lemma 8.14 that �k ≤ �1 + 1.
As a result,

N�k ≤ N �k + dk = ik + nk < i1 + n1 + N = N (�1 + 1) + d1 ≤ N (�1 + 2),

i.e. �k < �1+2. Together we have �1 = · · · = �s < �s+1 = · · · = �1+1 for some 1 < s ≤ k
(where we treat the case s = k by �1 = · · · = �k). Set �̃:=�1. Then

ir + nr = N �̃ + dr for 1 ≤ r ≤ s,

ir + nr = N (�̃ + 1) + ds for s + 1 ≤ r ≤ k.

As a first consequence,

� = 1 +
∑

r

�r = 1 + k�̃ + (k − s),
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which determines �̃ = � �−1
k �, and hence all �r , as well as the index s. Using Lemma 8.14,

we determine that

is+1 + ns+1 < · · · < ik + nk < i1 + n1 + N < · · · < is + ns + N ,

and so

N (�̃ + 1) + ds+1 < · · · < N (�̃ + 1) + dk < N (�̃ + 1) + d1 < · · · < N (�̃ + 1) + ds .

Therefore, ds+1 < · · · < dk < d1 < · · · < ds , which fixes the choice of dr for all r . We
conclude that given (Iin, Iout, �), we can reconstruct (Iout)Z by setting ir + nr :=N �r + dr .
This completes the proof of Proposition 8.11. ��

Proof (Lemma 8.14) (a) Let jZ be a nonempty integral normal form sequence with 0 = i1 <

· · · < ik ≤ N − 1 and strands [ir , . . . , ir + nr ] for 1 ≤ r ≤ k. Assume that there is some
index 1 ≤ t ≤ k − 1 such that it + nt ≥ it+1 + nt+1. Since it < it+1, we have nt > nt+1.
So

jZ = . . . (. . . it + nt . . .)
︸ ︷︷ ︸

the nt th bracket

. . . (. . . it + nt+1 it+1 + nt+1 . . .)
︸ ︷︷ ︸

the nt+1th bracket

. . . .

From it +nt+1 < it+1+nt+1 ≤ it +nt it follows that there is some integer nt+1 < p ≤ nt
such that it+1 + nt+1 = it + p appears in the strand [it , . . . , it + nt ], i.e.

jZ = . . . (. . . it + nt . . .)
︸ ︷︷ ︸

the nt th bracket

. . . (. . . it + p . . .)
︸ ︷︷ ︸

the pth bracket

. . . (. . . it + nt+1 it+1 + nt+1 . . .)
︸ ︷︷ ︸

the nt+1th bracket

. . .

with it + p = it+1 + nt+1. But by the definition of the strands, there is no it+1 + nt+1 + 1
appearing to the left of it+1 +nt+1. Due to Lemma 8.1, we know that (even modulo N ) there
is no repetition of it+1 + nt+1 to the left. Thus it + p = it+1 + nt+1 is not possible, and we
obtain i1 + n1 < i2 + n2 < · · · < ik + nk .

For (b) of Lemma 8.14, assume ik +nk ≥ i1 +n1 + N . It is true generally that N > ik , so
we get ik +nk ≥ i1 +n1 + N > ik +n1. Hence i1 +n1 + N = ik +b for some n1 < b ≤ nk ,
i.e. i1 + n1 + N appears in the strand [ik, . . . , ik + nk] and we have

jZ = . . . (. . . ik + nk)
︸ ︷︷ ︸

the nk th bracket

. . . (. . . ik + b . . .)
︸ ︷︷ ︸

the bth bracket

. . . (i1 + n1 . . . ik + n1)
︸ ︷︷ ︸

the n1th bracket

. . . .

Here it may be that the nk th bracket and the bth bracket coincide, but in any case, we find
that ik +b = i1 +n1 + N = i1 +n1 mod N , and so ik +b appears to the left of i1 +n1. By
the definition of the strands, there is no i1 +n1 +1 to the left of i1 +n1, and from Lemma 8.1
we deduce that in j = jZ mod N there is no i1 + n1 mod N to the left of i1 + n1 allowed,
which leads to a contradiction. Hence ik + nk < i1 + n1 + N must hold. ��

Having established that ψ is injective when restricted to sequences with i1 = 0, we now
show the injectivity of ψ in general.
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Proof (Proposition 8.9) We have the following disjoint decompositions according to the
smallest value i1 in j (0) for j :

{a( j) in normal form} =
∐

i

{a( j) in normal form, with i1 = i }

{(Iinj , Ioutj , � j )} =
∐

i

{(Iinj , Ioutj , � j ) | i1 = i ∈ Iinj }

ψ =
∐

i

(

ψi : {a( j) in normal form, with i1 = i }

→ {(Iinj , Ioutj , � j ) | i1 = i ∈ Iinj }
)

.

By Proposition 8.11, the mapψ0 : a( j) �→ (Iinj , Ioutj , � j ) restricted to those a( j)with i1 = 0

is injective. We argue next that by an index shift this result is true for all other ψi .
Now it follows from Proposition 8.11 that the map

̂ψ0 : {a( j) ∈ n̂TLN in normal form, with i1 = 0} → {(Iinj , Ioutj , ̂� j ) | i1 = 0 ∈ Iin}
is injective, where ̂� j counts the occurences of N − i in j . Recall that

� j =
∑

r

�r +1 and �r is the number of zeros in the r th strand [ir , . . . , ir +nr ] of j mod N .

Now observe that we can obtain � j from ̂� j as

� j = ̂� j − ∣∣{dr ∈ Ioutj | dr ≥ N − i}∣∣+ ∣∣{ir ∈ Iinj | ir > N − i}∣∣+ 1,

which follows from a computation using ̂� j =∑r
̂�r and

̂�r = the number of N − i in the r th strand [ir , . . . , ir + nr ] mod N

=
{

� ir+nr+i
N � if ir ≤ N − i

� ir+nr+i
N � − 1 if ir > N − i

=
{

� N�r+dr+i
N � if ir ≤ N − i

� N�r+dr+i
N � − 1 if ir > N − i

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�r + 1 if ir ≤ N − i and dr + i ≥ N

�r if ir ≤ N − i and dr + i < N

�r if ir > N − i and dr + i ≥ N

�r − 1 if ir > N − i and dr + i < N .

We obtain ψi by first shifting the indices of j by subtracting i from each index, j −
(i, . . . , i), then applying ̂ψ0, and finally shifting the indices from Iinj and Ioutj by adding i to

each. Hence, ψi is injective for each i , and ψ is injective because the unions are disjoint. ��
8.4 Step 3: Description and linear independence of the matrices

Recall that the standard k-basis of the representation V = ⊕N
k=0

(

k[q] ⊗∧k kN
)

is given

by

{q� · vi1 ∧ · · · ∧ vik | � ∈ Z≥0, 1 ≤ i1 < · · · < ik ≤ N }
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where (i1, . . . , ik) is identified with the particle configuration having particles in those
positions in the graphical description. Now we describe with respect to this basis the
matrix representing a nonzero monomial a( j) ∈ n̂TLN as a 2N × 2N -matrix with entries

in k[q]. Since V decomposes as a n̂TLN -module into submodules k[q] ⊗ ∧k kN for
k = 0, 1, . . . , N , the matrix of a( j) is block diagonal with N + 1 blocks A0, A1, . . . , AN ,
where A0 = AN = (0) corresponding to the trivial representation.

a( j) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 · · · 0

0 A1
...

. . .

... AN−1 0
0 · · · 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The block Ak is a
(N
k

)× (Nk
)

-matrix, with entries from k[q] indexed by all possible particle
configurations whose number of particles equal to k.

Nowfixanonzeromonomiala( j) in normal form that is specifiedby the triple (Iinj , Ioutj , � j )

defined in Step 2. Let k = |Iinj |. All blocks A1, . . . , Ak−1 are zero since a( j) expects at least

k particles. For r > k there might be nonzero blocks Ar . Such nonzero blocks appear unless
the particles from Iinj are moved around the whole circle with no position left out, in which

case there are no surplus particles allowed. This occurs if a( j) contains at least every other
generator ai , ai+2, . . ..

More importantly, the block Ak has precisely one nonzero entry, and this is given by

(Ak)Iinj ,Ioutj
= ±q� j .

From this we see first that all matrices representing monomials a( j) in normal form with

|Iinj | = N − 1 are k-linearly independent: They have only one nonzero entry which is equal

to ±q� j at position (Iinj , Ioutj ). Furthermore, if all matrices representing monomials a( j) in

normal form with |Iinj | ≥ k are k-linearly independent, then also all matrices represent-

ing monomials a( j) in normal form with |Iinj | ≥ k − 1 are k-linearly independent. This

follows because the additional monomials a( j) with |Iinj | = k − 1 have nonzero entries

(Ak−1)Iinj ,Ioutj
= ±q� j in the (k − 1)th block which is zero for all a( j) with |Iinj | ≥ k. So by

induction, all matrices representing monomials a( j) in normal form are k-linearly indepen-
dent. Since all of them have a zero entry in the upper left (and lower right) corner, we may
add the identity matrix to the linearly independent set of matrices, and it remains linearly
independent. So the representation of n̂TLN on V is faithful, because according to Theorem
8.6, {a( j) in normal form} ∪ {1} is a k-basis of n̂TLN .

Section 8 has given a normal form for each monomial and has provided an alternate proof
of the faithfulness of the representation of n̂TLN by elementary arguments.
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